需要・販売予測の方法-1 2022年9月14日

◇プロットして観察する

◇パターンを抽出する ・時系列分析 トレンド、季節変動

◇因果関係を利用する

・重回帰分析
トレンド、季節指数、ダミー変数
その他

売上高推移(設立~20年)

売上高は順調に伸びている!?

年度	売上高	前年比
2002	1	-
2003	2	2.00
2004	3	1.50
2005	4	1.33
2006	5	1.25
2007	6	1.20
2008	7	1.17
2009	8	1.14
2010	9	1.13
2011	10	1.11
2012	11	1.10
2013	12	1.09
2014	13	1.08
2015	14	1.08
2016	15	1.07
2017	16	1.07
2018	17	1.06
2019	18	1.06
2020	19	1.06
2021	20	1.05

・年度間の差に着目

+1

・年度間の比に着目

比率は年々減少!

折れ線グラフの作成 (SAS studio)

1. 「ファイル(ホーム)」を右クリックー「新規作成」ー「フォルダ」をクリック、 「新規フォルダ名(需要・販売予測の方法1)」を入力し、「保存」をクリック する。

2. ファイルをアップロードする。 「需要・販売予測の方法1」を右クリック、「ファイルのアップロード」をクリックし、 「ファイルの選択」から、ファイルを選択し「アップロード」をクリックする。

3.「需要・販売予測の方法1」フォルダを開きファイル(EXCELデータ)を 右側のプロセスフロー画面にドラッグし、右クリックして「開く」を選択する。

4.「ワークシート名(Data1)」を入力し、実行ボタンをクリックする。

8

5. 「プロセスフロー」をクリックしてフロー画面に戻り、「タスクとユーティリティ」 を開く。

6. 「タスクとユーティリティ」→「タスク」→「グラフ」の「折れ線グラフ」をフロー 画面にドラッグし、「EXCELデータ・・」と結合、右クリック-「開く」をクリック する。

10

Sas

7.「データ」、「カテゴリ(年度)」、「メジャー(変数)」、「変数(売上高)」 をセットする。

11

Sas

8. 実行ボタンをクリックすると折れ線グラフが表示される。

t *プロセスフロー 1 ×
プロセスフロー1 〉 折れ線グラフ
設定 コード/結果 分割 チロ 気
データ 表示 情報 ノード
 データ
WORK.IMPORT
▼ フィルタ: (なし)
▼ 役割
*カテゴリ: (1 項目)
123 年度
サブカテゴリ: (1 項目)
💊 列
メジャー: 変数 🔻
*変数: (1 項目)
◎ 売上高
▼統計量:
合計 (デフォルト) ▼
▶ 追加役割

グラフ(標準目盛)が表示される。

折れ線グラフと棒グラフの違いは何か?

量を表す:目の動きは棒をイメージして上下に動かす

「表示」をクリックし、「Y軸(対数スケールを使用する)」、「基準値 {10 (デフォルト)}」にする。 実行ボタンをクリックする。

グラフ(対数目盛)が表示される。

Ssas.

◇支店(東北、関東、沖縄)別売上高

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
東北	188	192	201	216	266	238	225	200	260	213	198	218
関東	730	648	813	752	802	868	856	910	1183	1020	923	955
沖縄	41	40	55	63	113	42	53	50	65	48	45	47

	4月	5月	差	前月比
東北	216	266	50	1.231
関東	752	802	50	1.066
沖縄	63	113	50	1.794
	8月	9月	差	前月比
東北	200	260	60	1.3
関東	910	1183	273	1.3
沖縄	50	65	15	1.3

1.「ワークシート名(Data2)」を入力し、実行ボタンをクリックする。

SAS[®] Studio

t *プロセスフロ−1 ×
<u>プロセスフロー1</u> 〉 "EXCELファイル.xlsx" のインポート
設定 コード/結果 分割 🗶 🐼 🚼
オプションノード
▼ ファイル情報
ソース ファイル
ファイル名: EXCELファイル.xlsx
ソースの場所: /home/u61364448/需要・販売予測の方法1
ワークシート名:
Data2
出わごしな
шлу — 9
SAS Server: SASApp
データセット名: IMPORT
ライブラリ: WORK

変更

2. 「折れ線グラフ」を右クリック-「開く」をクリックする。

Sas

3.「データ」、「カテゴリ(月)」、「サブカテゴリ(地域)」、「メジャー(変数)」、 「変数(売上高)」をセットする。

SAS [®] Studio		メジャー: 変数	
▶ サーバーファイルとフォルダ	🐮 *プロセスフロー 1 🗙	*変数: <i>(1</i> 項目)	≜ +
▼ タスクとユーティリティ	<u>プロセスフロー 1</u> 〉 折れ線グラフ	123 元上局	
韓▼ 亩 民 Ⅲ 55	設定 コード/結果 分割 🖌	▼統計量:	
▶ 🔽 マイタスク	データ 表示 情報	合計 (デフォルト)	-
▲ 🛄 タスク	▼データ	▶追加役割	
▶ 🛄 データ	WORK.IMPORT	▼ 220	
⊿ 📫 グラフ	₹フィルタ:(なし)		
▶ 棒グラフ	▼役割		
┙ 棒-折れ線グラフ	*カテゴリ: (1 項目)	亩 +	
●● 箱ひげ図	▲月		
🛃 バブルプロット			
鸓 ヒートマップ	サブカテゴリ: <i>(1</i> 項目)	= +	
	▲ 地域		
▶ 折れ線グラフ	サブカテゴリの凡例の表示:		
🔢 モザイクプロット	◉ サブカテゴリの凡例		
🔩 円グラフ	○ 線のラベル		

Ssas

4. 実行ボタンをクリックする。

SSas

折れ線グラフ (対数目盛)

	(百万円)	
	新製品	
1月	38	90
2月	25	80
3月	73	60
4月	82	50
5月	43	40 30
6月	66	20
7月	38	10
8月	29	0 1月 2月 3月 4月 5月 6月 7月 8月 9月
9月	71	
10月	?	10月の売上高は?

新製品と主力製品の売上高

(百万円)

	新製品	主力製品
1月	38	523
2月	25	384
3月	73	758
4月	82	813
5月	43	492
6月	66	678
7月	38	495
8月	29	418
9月	71	723

折れ線グラフ (普通目盛)

折れ線グラフ (対数目盛)

人間の五感は対数に変換されている

◇ウェーバー・フェヒナーの法則 弁別閾(気づくことができる最小の刺激差)は 刺激の値に比例

手に重りを100gのせ、少しずつ重りを加え、 重さの違いを感じたのが110gのとき、 手に重りを200gのせ、1gずつ重りを加えると、 重さの違いを感じるのは220gのときである。

デシベル、PH、マグニチュード、等星・・・

多くの場合、時系列の時間的変化は変動要素を持つ。

【変動要素】

- (1)傾向変動(T:trend)
 - データが時系列に進む方向を示す要素
- (2) 循環変動(C: cycle movement) 景気変動などの長周期の変動要素
- (3)季節的変動(S: seasonal movement)
 季節的要因、12ヶ月の確定周期で繰り返す変動要素
 (4)不規則変動(I: irregular component)

上記3つ以外のすべての変動要因

循環変動(C)は傾向変動(T)に含まれることが多い

$$Y = (TC) \times (SI)$$

Sas

移動平均法

変動に一定の規則性があるとき、その変動をある程度排除

◇3項移動平均

年	1	2	3	4	5	6	7	8	9	10	11
売上高	32	58	63	25	72	52	31	43	52	39	61

求める項の値に前後の項の値を加えて3で除する。 1年:計算できない 2年: (32+58+63) / 3=51.0 3年: (58+63+25) / 3=48.7

10年: (52+39+61) / 3=50.7 11年:計算できない

年	1	2	3	4	5	6	7	8	9	10	11
売上高	-	51.0	48.7	53.3	49.7	51.7	42.0	42.0	44.7	50.7	-

30

Sas

3項移動平均

◇4項移動平均

年	1	2	3	4	5	6	7	8	9	10	11	12
売上高	32	58	63	25	72	52	31	43	52	39	61	55

偶数項の移動平均は、中央項が存在しない。
1年:計算できない
2年:計算できない
3年:(32/2+58+63+25+72/2)/4=49.5
4年:(58/2+63+25+72+52/2)/4=53.8
10年:(43/2+52+39+61+55/2)/4=50.3
11年:計算できない
12年:計算できない

年	1	2	3	4	5	6	7	8	9	10	11	12
売上高	-	-	49.5	53.8	49.0	47.3	47.0	42.9	45.0	50.3	I	-

	2020	2021
1月	318	315
2月	298	305
3月	185	192
4月	173	205
5月	199	231
6月	328	334
7月	415	482
8月	298	353
9月	203	281
10月	192	187
11月	195	192
12月	381	380

2022年の売上高?

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
2020	318	298	185	173	199	328	415	298	203	192	195	381
2021	315	305	192	205	231	334	482	353	281	187	192	380

12項(12ヶ月)移動平均による季節変動の除去

傾向変動(TC)を求める(12項移動平均)

年月	データ	12項移動平均
2020/1	318	
2	298	
3	185	
4	173	
5	199	
6	328	
7	415	265.3
8	298	265.5
9	203	266.0
10	192	267.7
11	195	270.3
12	381	271.9
2021/1	315	275.0
2	305	280.0
3	192	285.6
4	205	288.6
5	231	288.3
6	334	288.1
7	482	
8	353	
9	281	
10	187	
11	192	

2020年7月:12項移動平均値 265.3=(318/2+298+…+381+315/2)/12

Sas

季節変動(SI)を求める

1) 売上高を傾向変動(TC)で割る。

$Y = T C \cdot S I \qquad S I = Y \div T C$

			_
年月	データ	12項移動平均	季節変動
2020/1	318		
2	298		
3	185		
4	173		
5	199		
6	328		
7	415	265.3	1.564
8	298	265.5	1.123
9	203	266.0	0.763
10	192	267.7	0.717
11	195	270.3	0.721
12	381	271.9	1.401
2021/1	315	275.0	1.146
2	305	280.0	1.089
3	192	285.6	0.672
4	205	288.6	0.710
5	231	288.3	0.801
6	334	288.1	1.159
7	482		
8	353		
9	281		
10	187		
11	192		

 $1.564 = 415 \div 265.3$

2) 各月の季節変動の総和を12に調整する。(季節指数) 1.564 + 1.123 + ... + 1.159 = 11.868

年月	データ	12項移動平均	季節変動	季節指数
2020/1	318			
2	298			
3	185			
4	173			
5	199			
6	328			
7	415	265.3	1.564	1.582
8	298	265.5	1.123	1.135
9	203	266.0	0.763	0.772
10	192	267.7	0.717	0.725
11	195	270.3	0.721	0.729
12	381	271.9	1.401	1.417
2021/1	315	275.0	1.146	1.158
2	305	280.0	1.089	1.101
3	192	285.6	0.672	0.680
4	205	288.6	0.710	0.718
5	231	288.3	0.801	0.810
6	334	288.1	1.159	1.172
7	482	=+	11.000	12.000
8	353	ㅁ히	11.808	12.000
9	281			
10	187			
11	192			

$1.582 = 1.564 \times (12/11.868)$

	2020	2021	季節指数
1月	318	315	1.158
2月	298	305	1.101
3月	185	192	0.680
4月	173	205	0.718
5月	199	231	0.810
6月	328	334	1.172
7月	415	482	1.582
8月	298	353	1.135
9月	203	281	0.772
10月	192	187	0.725
11月	195	192	0.729
12月	381	380	1.417
		=∔	

<事例>百貨店の過去3年間の売上高実績。 2022年の月別売上高を予測せよ。

	2019年	2020年	2021年
1月	219	262	316
2月	217	260	312
3月	307	356	443
4月	284	347	438
5月	266	316	394
6月	271	323	410
7月	387	482	617
8月	270	320	409
9月	232	289	349
10月	326	392	483
11月	338	401	503
12月	768	938	1144

<2022年1月~12月の売上高予測手順>

2022年1月~12月の傾向変動(TC)の予測値 2022年1月~12月の季節指数を求める

- 1) 傾向変動(TC)を求める(12項移動平均)
- 2) 最小2乗法によりTCの回帰式を求める
- 3) 2022年1月~12月のTCの予測値を求める
- 4)季節変動(SI)を求める
- 5) 季節指数を求める
- 6) TCの予測値、季節指数から売上高の予測値 を求める

44

1) 12項移動平均値を求める

	百貨店売上商		
No.		売上高	12項移動平均値
	2019年1月	219	
	2月	217	
	3月	307	
	4月	284	
<u> </u>	5月	266	
	6月	271	
1	7月	387	325.5
2	8月	270	329.1
3	9月	232	333.0
4	10月	326	337.6
5	11月	338	342.3
6	12月	768	346.6
7	2020年1月	262	352.7
8	2月	260	358.8
9	3月	356	363.2
10	4月	347	368.3
11	5月	316	373.7
12	6月	323	383.4
13	7月	482	392.8
14	8月	320	397.2
15	9月	289	403.0
16	10月	392	410.4

2019年7月:12項移動平均値 =(219/2+217+…+768+262/2)/12

2) TCの予測値(2021年1月~12月)を単回帰分析 により求める。

1. 「ワークシート名(Data22)」を入力し、実行ボタンをクリックする。

SAS [®] Studio	
▼ サーバーファイルとフォルダ	t *プロセスフロー1 ×
 	<u>プロセスフロー1</u> > "EXCEL ファイル.xlsx" のインポート 設定 コード/結果 分割 ★ ■ ★ ■ オプション ノード ・ファイル情報 ソースファイル ファイル名: EXCEL ファイル xlsx
 ▶ データ分析の基礎2 ▶ データ分析の基礎3 ▲ 需要・販売予測の方法1 ▶ EXCELファイル.xlsx 	ソースの場所: /home/u61364448/需要・販売予測の方法1 ワークシート名: Data22
▶ タスクとユーティリティ ▶ スニペット	出カデータ SAS Server: SASApp データセット名: IMPORT ライブラリ: WORK 変更 ▼オプション ファイルの種類・

Sas

2.「タスクとユーティリティ」→「タスク」→「線形モデル」の「線形回帰 分析」をフロー画面にドラッグし、「EXCELデータ・・」と結合、 右クリック-「開く」をクリックする。

3. 「データ」、「従属変数(12項移動平均値)」、「連続変数(No.)」 をセットする。

Sas

4. 「モデル」をクリックし、「モデル効果」の切片を「No.」にする。

Sas

5. 切片の編集では、変数「No.」を選択し、「単一効果」の「追加」を クリックし、OKボタンを押す。 6. 実行ボタンをクリックする。

分析結果が出力される。

Root MSE	4.83988	R2 乗	0.9896
従属変数の平均	390.82465	調整済み R2 乗	0.9892
変動係数	1.23838		

バラメータの 推定						
変数 ラベル 自由度 パラメータ t 値					Pr > [t]	
Intercept	Intercept	1	309.06310	2.03929	151.55	<.0001
No.	No.	1	6.54092	0.1 4272	45.83	<.0001

$TC = 309.06 + 6.541 \times No.$

・自由度調整済み決定係数 0.9892

④TCの予測値(2022年1月~12月)を算出する

10		_	_	_	_	
T		百貨店売上	高			
	Na.		売上高	12項移動平均値	回帰式	
	22	4月	438	455.4	453.0	
	23	5月	394	463.4	459.5	
	24	6月	410	476.3	466.0	
	25	7月	617		472.6	
	26	8月	409		479.1	
	27	9月	349		485.7	
	28	10月	483		492.2	
	29	11月	503		498.7	
	30	12月	1144		505.3	
	31	2022年1月			511.9	$511.9 = 309.05 + 6.5423 \times 31$
	32	2月			518.4	
	33	3月			524.9	
	34	4月			531.5	
	35	5月			538.0	
	36	6月			544.6	
	37	7月			551.1	
	38	8月			557.7	
	39	9月			564.2	
	40	10月			570.7	
	41	11月			577.3	
	42	12月			583.8	

Ssas

3)季節変動(SI)を求める

-	百貨店売上	高			
No.		売上高	12項移動平均値	回帰式	季節変動
	2019年1月	219			
	2月	217			
	3月	307			
	4月	284			
	5月	266			
	6月	271			
1	7月	387	325.5	315.6	1.189
2	8月	270	329.1	322.1	0.820
3	9月	232	333.0	328.7	0.697
4	10月	326	337.6	335.2	0.966
5	11月	338	342.3	341.8	0.987
6	12月	768	346.6	348.3	2.216
7	2020年1月	262	352.7	354.8	0.743
8	2月	260	358.8	361.4	0.725
9	3月	356	363.2	367.9	0.980
10	4月	347	368.3	374.5	0.942
11	5月	316	373.7	381.0	0.846
12	6月	323	383.4	387.6	0.842
13	7月	482	392.8	394.1	1.227
14	8月	320	397.2	400.6	0.806
15	9月	289	403.0	407.2	0.717
16	10月	392	410.4	413.7	0.955

1.189=387 / 325.5

4)季節変動(SI)の平均(幾何平均)を求める

<i>2</i>	百貨店売上	高				
Na.		売上高	12項移動平均値	回帰式	季節変動	季節変動の平均
	4月	284				
	5月	266				
	6月	271				
1	7月	387	325.5	315.6	1.189	1.208
2	8月	270	329.1	322.1	0.820	0.813
3	9月	232	333.0	328.7	0.697	0.707
4	10月	326	337.6	335.2	0.966	0.960
5	11月	338	342.3	341.8	0.987	0.974
6	12月	768	346.6	348.3	2.216	2.213
7	2020年1月	262	352.7	354.8	0.743	0.736
8	2月	260	358.8	361.4	0.725	0.715
9	3月	356	363.2	367.9	0.980	0.983
10	4月	347	368.3	374.5	0.942	0.952
11	5月	316	373.7	381.0	0.846	0.848
12	6月	323	383.4	387.6	0.842	0.852
13	7月	482	392.8	394.1	1.227	
14	8月	320	397.2	400.6	0.806	
15	9月	289	403.0	407.2	0.717	
16	10月	392	410.4	413.7	0.955	
17	11月	401	417.4	420.3	0.961	
18	12月	938	424.3	426.8	2.211	
19	2021年1月	316	433.5	433.4	0.729	

7月 : 1.208 = √1.189×1.227

Sas

	百貨店売上	高					
Na.		売上高	12項移動平均値	回帰式	季節変動	季節変動の平均	季節指数
	2019年1月	219					
	2月	217					
	3月	307					
	4月	284					
	5月	266					
	6月	271					
1	7月	387	325.5	315.6	1.189	1.208	1.212
2	8月	270	329.1	322.1	0.820	0.813	0.816
3	9月	232	333.0	328.7	0.697	0.707	0.709
4	10月	326	337.6	335.2	0.966	0.960	0.964
5	11月	338	342.3	341.8	0.987	0.974	0.977
6	12月	768	346.6	348.3	2.216	2.213	2.221
7	2020年1月	262	352.7	354.8	0.743	0.736	0.738
8	2月	260	358.8	361.4	0.725	0.715	0.717
9	3月	356	363.2	367.9	0.980	0.983	0.987
10	4月	347	368.3	374.5	0.942	0.952	0.955
11	5月	316	373.7	381.0	0.846	0.848	0.851
12	6月	323	383.4	387.6	0.842	0.852	0.854
13	7月	482	392.8	394.1	1.227	11.960	12.000
14	8月	320	397.2	400.6	0.806		

①「季節変動の平均」の合計を求める : 11.960
 ②合計を12に調整して季節指数を求める

 1.212 = 1.208 × (12.000 / 11.960)

Sas

5) 予測値を求める

	百貨店売上	高						
No.		売上高	12項移動平均値	回帰式	季節変動	季節変動の平均	季節指数	予測値
31	2022年1月			511.9			0.738	377.9
32	2月			518.4			0.717	371.6
33	3月			524.9			0.987	517.9
34	4月			531.5			0.955	507.6
35	5月			538.0			0.851	457.7
36	6月			544.6			0.854	465.3
37	7月			551.1			1.212	667.9
38	8月			557.7			0.816	454.9
39	9月			564.2			0.709	400.2
40	10月			570.7			0.964	549.9
41	11月			577.3			0.977	564.1
42	12月			583.8			2.221	1296.5

①季節指数を予測年(2022年1月~12月)に転記する
 ②予測値を求める
 377.9 = 511.8 × 0.738

◇ある会社の年度別売上高。平均伸び率は?

$100 \times 1.25 \times 1.25 = 156.25$

比率の平均に算術平均は使用できない

1.2と1.3の幾何平均は、 $\sqrt{1.2 \times 1.3} = 1.2489...$

$100 \times 1.2489... \times 1.2489... = 156$

2つの幾何平均 √(a×b) 4つの幾何平均 ⁴√(a×b×c×d)

◇ある商品を価格300円で発売し、その後3回値上げをした。 値上げ率の平均は?

	価格			値上げ率
発売価格	300		1回目	1.167
1回目	350		2回目	1.086
2回目	380		3回目	1.105
3回目	420	_		1

$\sqrt[3]{1.167 \times 1.086 \times 1.105} = 1.1187$

GEOMEAN(幾何平均)

f_{x}	=GEOMEAN(E3:E4)				
	D	E	F		
		伸び率			
	2019/2018	1.2			
	2020/2019	1.3			
	幾何平均	1.249			

f_{x}	=GEOMEAN(E3:E5)		
	D	E	F
		値上げ率	
	108	1.167	
	20目	1.086	
	308	1.105	
	幾何平均	1.119	

n乗根:^(1/ n)

√ f _x	=1.4^(1	/3)
С	D	E
	1.119	

広辞苑 ~平均~ 多くの量または数の中間的な値。また、それを求める演算。 中間の意味のとり方によって、相加平均(算術平均)、 相乗平均(幾何平均)その他がある。 ふつう、相加平均(算術平均)をさす。

幾何平均は比率の合理的な平均値であり、比率、 指数等の平均においては、算術平均より優れる。

62 Sas

まとめ

◇プロットして観察する 折れ線グラフにおける対数目盛の活用 ◇時系列分析 TC×SI 移動平均(12カ月移動平均) 季節変動、季節指数 TCSI分離法による予測 ◇相関分析による予測 ◇重回帰分析による予測 トレンド、季節指数、ダミー変数

アンケートのお願い・ご質問 9月14日 需要・販売予測の方法 -1

今後の参考にさせていただくため、ぜひともアンケートにご協力 お願いします。

・無記名
 ・所要時間目安: 1~3分

アンケートURL

https://sas.qualtrics.com/jfe/form/SV_6GqjKp90Ntc3ElE

・お客様講演会のアーカイブは、2022年9月20日~2023年3月31日迄 視聴できます。

本日の内容に関するご質問は、下記宛にご連絡ください。

que@datascience.co.jp

ご視聴ありがとうございました。

64